KUSHAGRA GUPTA

(+1) (737) 420-7734 \diamond kushagrag@utexas.edu \diamond

EDUCATION

The University of Texas at Austin	Aug 2023 - Present
Ph.D. in Electrical and Computer Engineering	
Advisors: David Fridovich-Keil, Ufuk Topcu, Sandeep Chinchali	
Indian Institute of Technology, Delhi	Jul 2019 - May 2023
Bachelor of Technology in Mechanical Engineering	GPA: 9.212/10
Thesis Advisors: Souvik Chakraborty, Shaurya Shriyam	Dept. Rank: 5/89

RESEARCH INTERESTS

My primary research interests lie at the intersection of machine learning, control theory, game theory and multi-agent decision making. My goal is to make efficient, safe and adaptable robots. Consequently, I am interested in applications involving robot learning, motion planning, dynamic games and embodied AI.

PUBLICATIONS

Kushagra Gupta, David Fridovich-Keil, "Iterative LQ Games for Occlusion Motion Planning", Conference on Robot Learning Workshop on Strategic Multi-Agent Interactions: Game Theory for Robot Learning and Decision Making, 2022. [pdf]

RESEARCH EXPERIENCE

Deep Learning based Latent Time Series Methods for Robot Trajectories Deep Learning, Optimal Control - Undergraduate Thesis Aug 2022 - April 2023

- Used Physics-Informed Deep Learning to learn **true system dynamics** with generalised robot image data for the task of **accurate prediction** of future trajectories and control of robotic systems.
- Encoded image data sequence into a **latent** space using a variational autoencoder and the dynamics were learnt using **physics-based priors** in offline training.
- The dynamical model which is learned is coupled with an iterative linear-quadratic regulator for **efficient control**. The model has been successfully tested for controlling planar two-link manipulator for trajectory tracking problems.

Control and Learning for Autonomous Robotics (CLeAR) Lab, UT Austin Motion Planning, Game Theory - Research Internship April 2022 - May 2023

- Worked under the guidance of Prof. David Fridovich-Keil to develop a novel **multi-agent** algorithm for **motion planning** in **occluded** scenarios, which uses **dynamic games** and is capable of real-time performance.
- Designed an efficient iterative linear-quadratic method for decision-making using a hybrid information structure utilizing Hamiltonian-Jacobi-Bellman equations and Pontryagin's Principle to find local approximations to Nash equilibria.
- Achieved 8.062 ± 1.031 s computational time for our algorithm in Julia simulations for 3-vehicle overtaking scenario, **outperforming** time scores of previous works employing grid-based reachability analysis and zero-sum games.

Assured Intelligent Robotics (Air) Lab, Cleveland State University

Motion Planning, Optimal Control - Research Internship June 2022 - Dec 2022

- Working under the guidance of Prof. Qin Lin on developing techniques for accommodating **uncertainty** in dynamical models to improve performance of **model-based optimal control** methods while remaining **time-efficient**.
- Developing framework for **constrained iterative linear-quadratic regulator** (CILQR) utilizing a **generalised extended state observer** (ESO) to compensate non-linear errors and external disturbances in an MPC scheme.
- The method accounts for uncertainties caused by the difference between the nominal and linearised dynamic model.

Intelligent Mechanical Systems Lab, Shibaura Institute of Technology, Tokyo

Remote Teleoperation, Mobile Robots - Research Internship May 2021 - July 2021

- Remotely collaborated with Prof. Nobuto Matsuhira and conducted teleoperation experiments between India and Japan to study response in remote assistive applications.
- Identified need of autonomous variation in collision avoidance parameters for assisting human robot operators in narrow-spaced environments and achieved reduction in ping rates by removing redundant nodes.
- Developed **Pioneer 3-DX** based robot simulations in **ROS** using Navigation Stack library for lab research use.

School of Public Policy, IIT Delhi

Agent Based Models, Complex Adaptative Systems - Research Project Aug 2021 - Dec 2021

- Worked under Prof. Kaveri Iychettira to develop a novel learning model for social behaviour of actors which is used in specifying agent-based models.
- Designed agents to display hybrid social-individual behaviour (**replicator-reinforcement**) to learn from their own experience while also accounting for societal experiences.
- Successfully observed early stage **novel** actor behaviour in a market game setting before convergence, which was absent in baseline **Roth-Erev Model**.

TEACHING EXPERIENCE

Teaching Assistant - Control Theory Course

Jan 2023 - May 2023

- Working as the sole undergraduate TA in the course taken by instructor Prof. S.V. Modak.
- Taking laboratory and viva sessions for 181 registered students to supplement lectures.
- Organizing demos, physical experiments and MATLAB walkthroughs for weekly sessions.

RELEVANT COURSEWORK

Robotics, Algorithms and Planning: Machine Learning, Robotics Technology (Computer vision, Embedded Systems, Manipulator Kinematics), Control Theory, Kinematics and Dynamics of Machines, Introduction to Programming

Mathematics: Calculus, Linear Algebra, Differential Equations, Probability and Statistics, Numerical Analysis, Operations Research (Dynamic, Linear & Non-Linear Programming)
Miscellaneous: Complex Adaptive Systems, Manufacturing System Design (Queuing Theory, Inventory Modelling & Game Theory)

ORAL PRESENTATIONS

- December 2022, "Iterative LQ Games for Occlusion Motion Planning", Workshop on Strategic Multi-Agent Interactions, Conference on Robot Learning
- June 2021, "Getting Started with Robot Operating System", Robotics Club IIT Delhi [video]

SCHOLASTIC ACHIEVEMENTS

- Selected for **Department Change** to Mechanical Engineering in **IIT Delhi** for being in **Top 5** % in year 2019-20.
- 1 out of 2 students selected to represent IIT Delhi in an exchange program at the City University of Hong Kong.
- Cleared Joint Entrance Exam (Advanced) with an All India Rank of **1267** in 2019 out of 0.16 million candidates.

TECHNICAL SKILLS

Programming Languages Tools and Softwares Software Libraries Python, Julia, Java, MATLAB ROS, Gazebo, Simulink, Solidworks PyTorch, TensorFlow, SciPy, Pandas, NumPy

RELATED POSITIONS OF RESPONSIBILITY

Robotics Club, IIT Delhi Student Coordinator

Sept 2021 - Aug 2022

Oct 2020 - Aug 2021

- Organized a robotics workshop for 250+ freshmen, focused on making line-following robots.
- Organized introductory lectures on robotics for outreach to college freshmen.

Core Team Member

• Developed game strategy for team submission to **ABU Robocon 2021** competition. Designed robot's arrow throwing mechanism in Autodesk Inventor. The team qualified the shortlist round with a perfect 100 score.